
Three Models for Scheduling
Space Shuttle

Missions and Resources

(NASA-CR-140319) THREE MODELS FOR N75-10127

SCHEDULING SPACE SHUTTLE MISSIONS AND
RESOURCES Final Report (International
Business Machines Corp.) 34 p HC $3.75 Unclas

.. CSCL 22A G3/12. 53181

Jerrold Rubin
IBM Philadelphia
Scientific Center

Final Report
NAS 9-13939

September 4, 1974Setme , 194 & v° (%,. A

%, '. " ':.v.



The problem considered in this report is that of scheduling space shuttle missions
within specified window and resource constraints. For our purposes, each mission
can be thought of as a set of one or more assignments, each assignment requiring one
unit of some resource (such as one pilot, one mission specialist, one orbiter, etc).
Each such assignment may utilize its resource unit for a period of time prior to and/or
subsequent to the mission launch date. The length of those periods may differ for
different assignments. A given resource unit either is, or is not, qualified for a given
assignment, and this is considered known.

Each mission has a "window" or time interval within which its launch date is to be
set, else it cannot go. Some missions are required, others are potential with a given
value.

The objective is to schedule all required missions, and as many potential missions
as will give maximum value, assuring that qualified resource units are available for
the mission assignments.

Three models will be described. The first, model A, will ignore qualifications,
selecting misssions of maximum value up to the limits of the available numbers of
resources. It will also schedule these missions to time periods within their windows.
This will establish a target, the best that can be done if all resource units were
qualified for all missions.

The second, model B, assumes mission times are unknown and tries to assign
qualified resource units to the mission assignments. Model B can use as its input the
results of model A.

In case this cannot be done, it may still be possible to assign qualified resource
units to the selected missions, by altering launch times. The third and most complex
model, model C, uses as input an intermediate result of Model A (which contains the
mission selections and certain other information) and attempts to set both the resource
unit assignments and the launch times, so as to achieve a feasible total schedule.

Models A and C rely heavily on the assumptions that many missions resemble one
another in their pattern of resource usage. Specifically, two missions are called
"resource-equivalent" if the assignments on each can be put in 1-1 correspondence
so that, for every corresponding pair

a) The same type of resource (orbiter, pilot, etc.) is required
b) The length of usage prior to launch is the same
c) The length of usage during and subsequent to launch is the same.

Two resource-equivalent missions may have different windows, and different
qualification requirements for the resource unit needed.

Models A and C will be easier to solve if there are a small number of resource
equivalence classes. In sample data supplied by NASA, there were four such classes
among 58 missions.
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The number of variables in models A and C depends upon the number of time
periods. Since windows extended over one year, a rather gross granularity of one
week was used, giving 54 time periods to be considered in the NASA data. The
weekly period is applied both to mission windows and to lengths of usage of resource
units.

Certain other assumptions and simplifications are discussed at the end of this
report.
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Model A: Schedule missions within their windows considering overall availability

of resources, but not their qualifications.

Set Y.. = 1 If mission i launch date is in time period j

Y.. = 0 Otherwise1J

S. = 1 If mission i goes, 0 if not.
1 Of course, if i is a required mission, S. = 1.

1

Then, Y.. = S. (A.1)
1J 1J

For time period j, resource A, let

A
NA = number of units of resource A needed by mission i

1

R.A = number of units of resource A available in time period j
)A

dA = length of usage of resource A prior to launch of mission i
i

eA = length of usage of resource A subsequent to (and including) launch of
mission i

(Note: For notational simplicity, we assume all assignments of resource A in mission

i have the same values for dA , eA The model is easily extended if this is
not the case.) 1 1

In order to state that no more than RA units of resource A can be used in time
3 .A

period j, note that a mission i starting at time j-e. + 1 will still be using resource A at
1

time j, and a similar statement holds for time j + d .

Hence,

A
m=j+d.

i

A A
N Y. _ RA  (A.2)i .A Im j

m=j-e + 1i

The objective would be to maximize

V.S. (A.3)
11
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where V. = value of mission i
1

Now set

kx Y.
j iEEk 1j (A.4)

where E is the kth resource-equivalence class. Then Xk represents the numberkj
of class k missions launched in time period j.

We can formulate this as a combination of several transportation problems with
variable right hand sides.

Y = Si iEk (A.5a)

YiJ - Xk  (A.5b)
iERk 13 3

and an integer program on the Xk variables
3

A*
m=j + dA

mNA k k A
k A m (A.6)

m=j-e A + 1k
A A A

where Nk, ek, dk now all refer to the common values for equivalence class k.
There is one such transportation problem for each class k.

Since there are no costs on the variables Yij of the transportation problems, one
must only assure that the latter are feasible. If one could impose further conditions
besides (A. 6), and the obviously necessary

X S= S (A.7)
3 i Ek

on the variables X k and S. so as to guarantee their feasibility it would be possible3 1
to solve a problem with the much smaller number of variables X.k and S., using (A.3)

k Ias the objective function, and then, given the values of Xk. and S., proceed to solve3 i
the transportation problems knowing that their feasibility is guaranteed.
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This, in fact, can be done. The transportation problem variables Y.. have
1J

capacity 0 (if j is outside the window of mission i) or infinity (it is not necessary
to impose an explicit capacity of one, since Si is already bounded by one). Appendix

1 shows that the feasibility conditions are of the form

Sxk s. (A.8)
jEJ iI 1

where 3 = consecutive set of time periods from some left window boundary to

some right window boundary

I = all missions of class k with window entirely contained in J

There will be one equation for each term (1, u) of the cross product Lx U, where

L = Set of left window boundaries
U = Set of right window boundaries

except when the corresponding set I is empty.

For more detail, see Appendix 1.

The solution to the System (A.6, A.7, A.8) with objective (A.3) will provide "slots"

into which specific missions can be slipped. For example, X3 0 = 2 would mean that
10 th

two missions of resource-equivalence class 3 are to be schedule for launch in the 10
time period, without specifying which two. The S., of course, tell which missions are

1

selected and which are not. This information will be useful to model C, which will
assign specific missions, as well as specific qualified resource units, to these "slots".
Thus, depending on our purposes, we may or may not proceed to the solution of

k
the transportation problems following the determination of Xk and S..
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Model B: Assignment of qualified resource units to a fixed set of mission assignments
at known times.

Notice that we can independently treat each type of resource; hence assume we are
dealing with only one type of resource (e.g., mission specialists).

Let V .mi = 1 if unit m is assigned to mission assignment i, 0 otherwise. (Recallmi
there may be multiple assignments in one mission, each assignment requiring one unit.)
If m is not qualified for i, then Vmi = 0.

SVmi = 1 all i (B,1)
m

states that every assignment must be covered. Also,

V . 5 1 all m, k (B.2)
iEI(k) ml

where I (k) = set of mission assignments that are active when mission k initiates the
use of its resource unit (not necessarily the launch time).

Condition (B.2) states that any individual must not be used on two assignments
simultaneously.

Note that it is not necessary to have a simultaneity constraint for each time period,
since if a unit is simultaneously assigned to a set of two or more missions at any time,
it will also be simultaneously assigned at the latest starting time of that set of missions.

If slack variables were added to change equation (B.2) to equalities

V .mi + Smk= 1 (B.2a)
mi mkisl(k)

then (B. 1) and (B. 2a) would form a set partitioning problem, which should be readily
solvable.

If certain units are equivalent (are qualified for exactly the same missions), we
may regard m as an equivalence class, V .mi as determining whether any unit of classmx
m is assigned to i, and modify (B.2) to

il V N all m, k (B.2b)
iEI(k) mi m

where N = number of units in class m.m

For example, for pilots and commanders, on the sample data, only 6 equivalence
classes exist. Thus if, on the average, a man is qualified for half the assignments,
then assuming 50 missions, 52 assignments, there will be 156 0-1 variables for
commanders and pilots. The objective would be to determine feasibility.
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One could similarly take advantage of equivalence of mission assignments with
respect to resource units - i.e., two mission assignments would be equivalent if
exactly the same units were qualified. Then V .mi would tell the number of units of

class m assigned to mission assignments of class i, and B .1 would be modified to

,V = no. mission assignments in class i (B. la)
m

Standard branch and bound techniques can be used to solve (B. la, B.2b).
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Model C: Assign missions, times and multiple units of multiple resources. This
is the most comprehensive, and the largest model. Consider a transportation problem
for each time j, each resource type, and each resource equivalence class k of
missions.

Let

r index the mission assignments
i index the missions
M(r) = mission corresponding to assignment r
W.ij = 1 iff mission i is launched at time j

kXk = 1 iff unit m is assigned to a mission of class
mj k launched at time j

Y mrj = 1 iff unit m is assigned to assignment r,
which is launched at time j

mission
assignments W..

r mrj

X k . Y = W.. where i = M(r) (C.1)
mj m mrj i3

kYmrj Xmj (C.2)

M (r) cEk

Note that Wij may appear more than once as a right hand side of (C.1). In

fact, it will appear exactly Nk times, where

Nk = number of assignments of this resource for a class k mission

We can guarantee the feasibility of this transportation problem by imposing
feasibility constraints (See Appendix 2), which are of the form

i i. - _ Nk . ij =  X k  (C.3)
iEIs meS Ekj

where S = a subset of men
Is = the maximal subset of missions corresponding to S

= complement of S
Rk = resource equivalent class k

It is possible to reduce the problem by considering qualification equivalence
classes of men or mission assignments. Two missions may be defined as "qualifica-
tion-equivalent" if
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a) They are in the same resource equivalence class
b) for each pair of corresponding assignments, precisely the

same resource units are qualified.

Two resource units may be regarded as equivalent if they are qualified for
precisely the same mission assignments.

We can now redefine W.. as the number of missions of class i launched at

time j.

If W.. is now to refer to an equivalence class of missions, we must assure

that they can be scheduled within their windows. If windows are narrow, the
number of non-zero Wij may be acceptable. If windows are broad, we could set

up a second transportation problem:

time
missions in at
qualification I Z .S
equivalence nj n
class ..

13

Z n = (C.4)

nj= W.. (C.5)
nei

S = 1 iff mission n goes.n

Z . = 1 iff mission n is launched at time j.
n]

We must then impose window feasibility conditions as in model A, of the
form (see Appendix 1).

ZWi j  Y, Sn  Wij = s n(C.6)

jJ nEl j n

The simultaneity conditions, for an equivalence class m of men, are

SXk. 5 N each J (C.7)
k jcT(k,J) m

where N = number men in equivalence class m.
m

T(k,J) = interval of resource usage if mission of class k is launched
in time J.
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We could also impose a volume restriction on the use of other resources. This
would involve stating that no more than N units of each resource are in use at any
one time. It would not guarantee that qualified resources are available, but would
apply to resources for which qualifications were not a critical consideration.

The condition would be

I JNk. I X X N each J, each resource type (C.8)
m k jET(k,J) mJ

(Resource equivalence classes must be defined with respect to all resources
considered).

SFor the NASA sample data, there are somewhat fewer than 1000 W.. variables.2j

It may be possible to reduce this figure further by different treatment of missions
wherein only one assignment is of a resource for which qualifications play an im-
portant role. For example, if it should turn out that it is easy to assign qualified
commanders and pilots to any proposed schedule, then we can leave this task to
model B, after mission times have been set. In model C only a volume require-
ment would be needed for commanders and pilots, and qualification considerations
would involve only mission specialists. Then any mission requiring only one
mission specialist could be treated as follows:

Consider the transportation problem posed by the following tableau:

man 1 man 2

Time = 1,52 Time = 1,52 - - - - - - -

missions Y S
in class k mij i

kx.
mj

Y mij S. (C.9)
m j 1

Y = Xk (C.10)
im i) m j

S = 1 if mission i goes, 0 otherwise

kXmj = 1 if man m goes on a mission at time j, 0 otherwise

Ymij = 1 if man m goes on mission i at time j, 0 otherwise.
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Certain Y ..mij may be forced to be zero, either because j is outside theml]
window of mission i, or because man m is not qualified for mission i. Therefore,
the above is a "capacitated" transportation problem, with capacities either zero
or infinity.

That a man cannot be used simultaneously on two missions can be stated:

. xk .  1 each J,m (C.11)
k j T(k, J) mj

where T(k,J) = time interval around J during which missions of class k are
actively using the resource involved.

We could then proceed to impose feasibility constraints, solve the integer
kprogram in the Xk mj variables, then solve the transportation problems, as in modelmj

A. However, both the number of constraints and the number of variables in either
the single-assignment, or the multiple assignment case, can grow rather large.
Let us therefore attempt to find another method of solution, other than a straight-
forward attack on a large integer program.

We have already achieved in model A a target optimum, which represents
those missions of greatest value for which resources are available, if their qualifi-
cations were not considered. The missions are given by the S. variables, and

1
"slots" for missions of the different resource equivalence classes are given by

k
the X. variables.J

If we were unable to create a schedule to match these slots, because of in-
sufficiently qualified personnel, it would mean that lack of qualifications was
having serious impact on scheduling of space shuttle missions. Since the relative
cost of qualifying personnel (compared to the cost of a mission itself) is slight,
we will make the assumption that qualifications will impact the schedule only to the
extent of requiring some shifting of mission times within the slots described above,
but not to the extent of requiring different missions to be flown, or a different set

kof slots i.e., the Si , X. variables will stay the same. If we are successful atJ

kestablishing values of X k . and W.. so that a feasible solution is established, wemj 13

know that it will be the optimal solution since we are informed by model A that
missions of no greater value can be squeezed in. If not, we may have to attempt
to solve model C, with its large number of variables and constraints (several
thousand of each) directly.
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We can regard the problem as follows:

a) on the one side, for each resource we must schedule units into the
preassigned slots, so that

X k = N Xk (C.12)
m mj k jm

where Nk = number of assignments of the resource for a class k mission

b) on the other, we must schedule missions to the same slots, so that

E w.. = xk (C.13)
ifE k 3

k

Furthermore, these assignments must mesh in the sense that a unit available
for a mission assignment must be qualified for it.

Nevertheless, problem (a) above, as an independent problem, is not
difficult. Disregarding qualifications, there is a very simple means of establish-

ing appropriate X k . variables, and that is to perform a "left-right" assignment.mj

Simply draw a diagram of the slots to be filled, with a time-line running from
left to right:

time

class 1 slotI I I

class 1 slot1 I I I
etc.

class 2 slotI I

Each slot represents the full usage of the resource unit, including usage
prior and subsequent to launch.

Starting with the full pool of resource units, assign one randomly to the first
slot (the one extending farthest left), and remove that unit from the pool. Repeat
with the next leftmost slot, remembering first to restore to the pool any unit that
has again become available. Since at any time period we are guaranteed (by
model A) not to use more resources than available, this method will provide a
complete assignment of resource units to the slots.

Note that specific missions have not yet been assigned.
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Suppose we perform the above process for each resource type, Then we
could solve a system in W.. alone, consisting of equations C.3 and C.6 for the

13
multiple unit missions, For missions requiring only one resource unit, only the
transportation problem C,8, C.9 need be solved. In both cases, feasibility would
be the only objective.

Further, since many values of X k. would be selected as zero, the transporta-
mj

tion problems, and the feasibility conditions, would reduce sharply in size and
number. For example, the problem C.1, C.2 would on the average reduce to a
one or two column problem.

However, we must seek justification for this procedure of almost randomly
ksetting some variables (X .) and solving for a feasible selection of the othersmj

(Wij). The problem C.9, C.10 will represent roughly a 50 x 50 assignment pro-

blem, for the largest resource equivalence class of the NASA sample data. If all
men were qualified for all mission assignments, we would be certain of its
feasibility, since window feasibility was assured by model A. The question there-
fore arises, how often will this feasibility be disturbed by imposing a relatively
random pattern of qualifications on the capacities.

This problem has not been directly examined. But some experimentation has
been done with randomly generated capacitated assignment problems of various
sizes. The results of these suggest that, if about 50% of the cells have capacity
zero, and the other 50% have capacity 1 a random 50 x 50 problem is almost
certain to be solvable, and the chance that a solution exists increases with size.
It is precisely where a great deal of flexibility exists, in switching missions

karound, that solutions are likely to be found, once the Xk . variables are set.
mJ

However, we must also worry about those cases where little flexibility exists
i.e., where the resource equivalence class is small, the mission window is tight,
or there are few qualified resource units available for a mission assignment. We

kmust assure for these critical missions that Xk. has been set so that it is at leastmj
possible to assign a qualified man to each mission assignment, all at the same
time within the mission window.

To meet this need, we adopt a heuristic which orders mission assignments
according to a measure of criticalness, based on the above criteria. Then, given

ka left-right assignment of the Xk ., which of course satisfies C.12, we start assign-mj
k

ing missions to times within their windows, and switching Xkmj accordingly so that,mj

at least for the most critical assignments, qualified men will be available at the
right times. After carrying this process to its limit, we obtain a set of values

k
for X mj which is more likely than the original set to provide a feasible solution
for the system. This process is described in detail in Appendix 3.
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Since random factors are involved in the selection of the Xk . (both in the left-
m3

right assignment, and in the switching procedure), if a feasible solution for the

W.. is not found, we could repeat the procedure with a new selection of Xk.9 m3
Eventually we might have to give up, and admit that a solution adhering to the
results of model A is either difficult or impossible to find. We would then have
the unpalatable option of running the complete model C, or performing the schedul-
ing manually.

Note that in spite of the heuristics, any solution found is an optimum, since it
adheres to the results of model A, and this was optimum for the case in which
all units were qualified for all mission assignments. Trouble would occur only
if we cannot find a solution, in which case it is probable that one would regard
resource units as insufficiently qualified. That is, qualifications should ideally
be kept substantial enough that solutions are easily found.
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Sample Data - Assumptions and Simplifications

Runs on models A and B were made with sample data supplied by NASA. This

consisted of 58 missions, 50 of which were required missions, Each mission used a

commander, a pilot, and either one or two mission specialists. In addition, each
must be flown from either the Eastern Test Range (ETR) or the Western Test Range
(WTR).

The only distinction, for our purposes, between commanders and pilots is that

a pilot must fly two missions before qualifying as a commander. On the assumption

that it would be simple to switch assignments if no commander was assigned to some

early mission, this condition was ignored, and commanders and pilots were pooled

for these tests.

Several other simplications were used, some of which point out shortcomings
in the model (though it is not clear how serious these are). Skills will lapse if

not used - however, refurbishment of such skills is apparently not difficult, so this

was ignored in the scheduling. Similarly, training in new skills is possible,

though time consuming, and would have to be decided external to the models. A

resource unit engaged in such training could be made unavailable to the model for

the training period, and its qualification pattern updated subsequent to such training

(note that in model C the qualification pattern can be given independently for each
time period).

Although standard maintenance periods can be included as part of the usage of

a resource unit subsequent to launch, longer than usual maintenance periods may be

periodically required, depending on the amount of usage a resource unit has received.
If the approximate date of such maintence can be estimated, it may be possible to

treat it as a mission (which requires only that unit, and for which only that unit is
qualified).

Vacations for crew members could conceivably be treated similarly. However,
we must remember that special purpose missions such as these increase the number
of resource equivalence classes, and hence the timing of the computer runs. For
example, vacations for commander-pilots, vacations for mission specialists, and
maintenance periods for orbiters would add three such equivalence classes. These
were not used for the test runs.

Since a weekly grid was chosen, the distinction between three day missions
which use resources for 5 weeks, and seven day missions which use resources for
6 weeks (including one week of rest following the refurbishment period) is blurred,
and was ignored in these tests.

k
Finally, a bound of 3 was placed on the X.k variables of model A, in an attempt to

avoid too many launches in any one week (both the ETR and WTR can support one
launch every two days). It clearly would have been better to introduce the constraint

TX k < 3 for eachj,
k i

but this was not done.
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Results

Runs were made by using APL to set up the models and the IBM MPSX program
to run the integer programs, The standard branch and bound strategies contained
in MPSX were used. A network Flow code, in APL, was used to solve the trans-
portation programs.

Runs of model A on MPSX took between 7 seconds and 5 minutes with a surprising
variation in time due to small changes in input. The result shown in Table 2 took 30
seconds, used both mission specialists and commander-pilots, but simplified the
latter by assuming an available total of 7 and a requirement of 1 for each mission
(instead of a total of 15 and a requirement of 2 for each mission). Since there is no
variation in the commander-pilot requirement, this is clearly equivalent.

. The four transportation problems for model A (one for each resource equivalence
class) took a fraction of a second each.

When the result of model A was input to model B to attempt the assignment of
qualified mission specialists, an infeasibility resulted, showing that it was impossible
to assign qualified men without reassigning mission times. An assignment of commander-
pilots was also attempted, but workspace size problems in APL prevented completion
of this run.

Workspace size difficulties also prevented running the full data on model C. How-
ever, a smaller problem was run on model C with results shown in Table 4. It is

notable that with the first attempt at selecting values for Xk no solution for the WXmj, noslto o h ij

variables can be found, but at the second try a solution (hence the optimal solution)
is found. A more elementary switching procedure than that described in Appendix 3
was used for this run.

16



1 9 1 0 1 2 4 1 2 4

1 36 1 0 1 2 4 1 2 4

1 40 1 0 1 2 4 1 2 4

1 53 1 0 1 2 4 1 2 4

5 9 1 0 1 2 4 1 2 4
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9 14 1 0 1 2 4 1 2

9 23 1 0 1 2 4 1 2 4
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25 26 0 1 1 2 4 1 2 4

1 27 0 1 1 2 4 1 2 4
44 53 0 1 1 2 7 2 2 7

46 48 0 1 1 2 4 1 2 4

29 53 0 1 1 2 4 1 2 4
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Mission Time Mission Time

1 2 31 41
2 2 32 44
3 3 33 45
4 3 34 45
5 8 35 50
6 9 36 53
7 9 37 4
8 10 38 8
9 10 39 20
10 10 40 21 Results of model A

.11 14 41 22
12 14 42 26 scheduling 58 missions,
13 15 43 39
14 15 44 34 some with 2 mission
15 16 45 41
16 22 46 41 specialists - all missions
17 16 47 47
18 18 48 51 are scheduled.
19 23 49 35
20 27 50 54
21 27 51 29
22 28 52 4
23 31 53 45
24 32 54 26
25 38 55 4
26 32 56 51
27 33 57 47
28 33 58 51
29 39
30 39

Table 2
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The Minimum Resource Problem

Models A and C deal basically with the problem of maximizing mission value

given fixed resources, if mission times are permitted to vary. For fixed mission
times, the problem becomes much simpler, since a left-right assignment of
resources will not only assign resource units, but also tell us how many un-
used ones remain. Indeed in this case, the minimum number of resource units
needed is precisely the maximum used at any point in time.

The problem of minimizing resource utilization for a fixed number of missions,
when mission times are permitted to vary, deserves some comment. This could
be done using model A, where all missions are treated as required missions, and

RA (the number of units of resource type A available in time period j) is made
3 A

variable. Costs could be assigned to each R., and the model minimized on
A 3

these costs. Probably, we would make RA equal for each j, and with costs of 1

assigned, the problem would involve minimizing the number of resource units
used.

If qualifications are involved, it becomes unclear as to what is meant by
minimizing resource utilization, since this can probably best be done by more
thorough training.
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Appendix 1

Conditions on Feasibility of the Mission - Time Period Transportation Problem

Theorem

Given a transportation problem with capacities C.. which are either zero1J

or infinite, and the infinite capacities contiguous in each row, as below:

C = 0o

0 0 0 C C C C 0 00 ai= b. (1)

0 C C C C 0 0 0 0 0 alli allji OC C 0 0 0all i all j
a.

1X ij = a. (2)

b.

X..ij = b. (3)
i 1J:

The interval of j for a contiguous row of C's is termed a window.

Let L = set of indexes j that initiate a window.
U = set of indexes j that terminate a window

Jk = the interval (1,u) where the pair (1,u) is the kth element of L x U.

Ik = i1Cij = 0, jEJk

To prove: The conditions for existence of a feasible solution are:

Sbi I a. (4)

jE Jk iCIk

where there is a constraint for each unique pair (1,u) in LxU such that there
is at least one mission with window entirely contained in the interval (1, U).

25



We assume that the first and last columns each contain an infinite capacity
(any column with all zero capacity can be dropped). Assume the inequalities
(4) are satisfied. By a known theorem (see "Flows in Networks" Ford-Fulkerson,
Princeton U. Press, p. 38) the problem is feasible if for every subset I of the
rows, and every subset J of the columns

SC.. I a. + b. - n (5)
i(I 13 iEI i Jj jIE j
jEJ

where n = a. = b. (6)
all i all j j

This condition is automatically satisfied for any sets I, J if there exist
i I and jEJ with C.. = oo. Further, for a fixed J let I = i C..i = 0, jcJ . Then

1) 0 13 0
let J = Ij C..i = 0, id . Such sets I, J are termed maximal sets since the13

addition of any other row to I or column to J would introduce some Cij with value
oo. If condition (5) is true for maximal sets I, 3, it is also clearly true for any
subset I'c I or J'c J. Hence, we need only examine the conditions for maximal
subsets.

Suppose now I is a maximal subset of rows. Its union of windows will
consist of intervals

Jk = (1k , uk) lk L, ukECU, 1k< uk< lk+1

11 12 13 u3

i,, , a , _a u 2

a a ul

for which each corresponding column contains at least one infinite capacity cell;
and intermediate intervals

*

k = (Uk + 1, k+1 - 1)

for which corresponding columns have zero capacity. (Note: the initial and
final intervals may be of either type.) The maximal subset J* corresponding to
I is clearly U J.

k
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Let J = U J
k

Let Ik = rows whose windows are in (1k, Uk).

Ik C I, since otherwise I would not be a maximal subset, and in fact I = U Ik
k

Further Ik A I. = 0 if k 0 j.
k I

Assuming equation (4) is satisfied,

b> a. for each k

j E (1k , uk) iEIk

Adding these equations for each k produces

b j>Za i
jEJ iEI

Since Zbj + Ibj = n, and since Cij = 0 if icl, jE J*,

jeJ jEJ*

condition (5) is an immediate consequence, and this establishes feasibility.

The converse, that feasibility (which is equivalent to conditions 5) implies the
inequalities (4), is clear.
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Appendix 2

Conditions on Feasibility of the Man-Mission Qualification Transportation
Problem for a Single Time Period.

In any time period, we have the transportation problem

mission assignments j

resource
units Xij a (m rows, n columns)i X. = a. x. = b.

j i
bj X = 1 iff unit i takes assignment j

where Cij = capacity = 0 if unit i is not qualified for mission assignment j,
infinity otherwise.

ai = 1 iff unit i is assigned in the time period, (i.e., is assigned to a launch)0 otherwise

b. 1 iff the mission is launched in the time period
0 otherwise

Clearly, we must impose a i = Xb

all i all j

From appendix 1, we know we need examine only maximal subsets I and J.
Each of the 2m row subsets has a corresponding maximal column subset, hence
there are at most 2m constraints. They are of the form

b. > ai
jEJ iEI

where I is a selection of resource units, and J consists of all missions for which
some unit in I is qualified.

If J is empty, we can delete the constraint. Also, if Il, 12 both have J as
the corresponding maximal subset of columns, and if 11CI 2 , we can delete the
constraint for II J.

We can extend this to equivalence classes of resource units, where all units
in a class are equally qualified for the missions. Then we must redefine
a.i = no. of units in equivalence class i assigned to a launch in the time period
(upper bound is cardinality of the equivalence class).
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Appendix 3

kTechniques for Switching Assignments of X . Tom3
Assure That Critical Missions Can Be Covered

In order to assure that the integer program in the W.. variables, in model C,
1k

is feasible, one would like to guarantee that selections of Xk . are made so thatm3
it is at least possible to assign launch dates of critical missions to time periods
and have qualified resource units available for the mission assignments. For
example, if a mission has window 9-13, and the only resource unit qualified for
one of its assignments has been positioned at time periods 8 and 14, it will clearly
be impossible to provide an overall feasible solution.

For this purpose, an ad hoc ordering and switching technique has been applied,
following the left-right assignment of the Xk . variables. Recall that a left-right

m]
assignment puts men into prestablished "slots", so that the relation

Xk .= N Xk
m mj k j

is maintained. During the switching process, we still maintain this equation.

The first step involves ordering all mission assignments, for all resource types,
according to the following criteria:

a) percentage of qualified resource units divided by length of use of the
unit

b) length of mission window

c) number of missions in the resource equivalence class

That is, assignments of equal value on criterion (a) are ordered according to
(b), those equal on (a) and (b) are ordered according to (c), and those equal on
all three are ordered randomly. Those assignments of smallest value are listed
first, as being the most critical ones.

It is by no means clear that this method of ranking assignments is best, but
at least the most critical assignments will appear early.

Note that the size of the resource equivalence class is of importance because
there is less flexibility in solving a small transportation problem than a large one.
If the transportation problem consists of only one or two mission assignments, for
example, we should be particularly careful in assuring that the selection of Xk

mj
for that class k puts qualified men at the right time periods.
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For the purposes of this ad hoc procedure only, tentative launch dates will be
set and tentative resource unit assignments made as we examine each critical
mission assignment. These launch dates and unit assignments will be discarded
prior to execution of the integer program, leaving it the full flexibility of assign-
ing launch dates and resource units.

We examine each assignment once, in order, executing the following steps:

1) If a mission launch date has not yet been tentatively chosen, use as
kpossibilities those dates within the window for which the X. variables

1 Jhave not already been filled. For example, if X2 = 3, and three class 1

missions have already been given tentative launch dates in time period
2, we may not use time period 2 as a launch date for another class 1
mission.

If a mission launch date has been tentatively chosen (i.e., because another
assignment of the same mission was more critical and hence appeared
higher on the list), use it as the only possibility.

If the list of possible launch dates is empty, proceed to the next most
critical assignment.

k2) List all possible values of Xk. for the resource type involved, such thatmj
j is within the list of possible launch dates, k is the correct resource
equivalence class for the mission, and m is both qualified for the assign-
ment, and has not yet been tentatively assigned to an assignment higher
on the list.

k
3) If this list is non-empty (i.e., if not all those X are zero), select onemj

at random, set the tentative mission time, tentatively assign m to this
assignment, and proceed to the next most critical assignment.

4) If the list constructed in step 2 is empty, we must try to reassign the
kX mj variables so that a qualified resource unit is available at one of them]

possible launch dates.

We know that an unqualified resource unit must be available, since we have
been maintaining the relationship

IXk NXk
m mj k j

Let M be such an (unqualified) unit.
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k
We can regard the X . variables as providing a time-line for resource unit

m]
M - i.e., unit M is "slotted" for missions of class k at time j. The class tells us
the length of usage of the unit. At any point during this process, therefore, a
unit M is either not being used, slotted but not explicitly assigned, or tentatively
assigned to a particular assignment.

time

Unit M slotted, class 2 free assigned to asst 1 free [slotted,class 1i etc.

launch launch launch

In order to switch a qualified unit so that it will take a slot that unit M is
currently taking, we must ensure that the result does not involve either unit
being simultaneously used by two missions. We can do this by switching an
entire "segment" i.e., an interval between two time periods at which both units
are free (or are just starting a mission).

Unit M G---] I - ,,

Unit M' -I i _.

Figure A

In figure A, to avoid simultaneity problems, the segment from F to G must be
switched.

Note that a segment is defined based on two resource units, not one. The
segments of M with a different unit M" might be entirely different.

Of course, if unit M' has already been explicitly assigned within the segment,
we must assure that M is qualified for those assignments, otherwise we cannot
make the switch. The same holds for any tentative assignments already made for
M.

Thus, the procedure for step 4 involves listing each slot of the correct class,
for any available resource unit (even though unqualified). Then for each such
slot and for each qualified unit, attempting to switch the smallest segment contain-
ing the slot (the smallest segment could conceivably be the entire time-line for the
two units).

kIf any legal switches result, pick one at random, reset Xmj accordingly, and
go back to step 2 with the confidence that there is now at least one qualified unit
available. If there are no legal switches possible, proceed to the next most critical
assignment.
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Note that there are two reasons why critical assignments may fail during this
process. The first is that, since we are not solving the window transportation

problem (which is guaranteed feasible by our choice of Xk in model A), but rather
J

are assigning mission launch times in a simple sequential fashion, we may not be
able to complete the assignment of launch times within the strictures imposed by

k
the X.k variables. Secondly, we may find cases where a simple switch to repositionJ
a qualified unit may not exist. Indeed, if we could complete this ad hoc procedure
without either of these problems occuring, we would have in hand a complete and
optimal solution to the problem. This is unlikely, however, and it should be kept
in mind that the entire purpose of this rather complicated heuristic is simply to

kfind a sensible selection of the Xk . variables so that it will be likely that the re-m]
maining integer program on the W.. has a feasible solution (or, in the case of

single-unit missions, the transportation problem).

If the integer program is infeasible then, since random choices were made
both in the original left-right assignment of Xk j, and in the above procedure,

m k
one alternative would be to repeat the selection of Xmj , hoping that the new

selection will allow a feasible solution to occur. A few such attempts might be
appropriate.
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